p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: C23.86C24, C42.128C23, C22.145C25, C4.482- 1+4, Q8⋊3Q8⋊28C2, C4⋊C4.330C23, (C2×C4).135C24, C4⋊Q8.228C22, C22⋊C4.59C23, (C4×Q8).241C22, (C2×Q8).471C23, (C2×C42).973C22, C42⋊2C2.8C22, C22⋊Q8.237C22, C2.51(C2×2- 1+4), C42.C2.87C22, (C22×C4).1219C23, C22.58C24⋊3C2, C42⋊C2.249C22, C22.35C24.5C2, C23.37C23.46C2, SmallGroup(128,2288)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.145C25
G = < a,b,c,d,e,f,g | a2=b2=1, c2=f2=g2=a, d2=ba=ab, e2=b, dcd-1=gcg-1=ac=ca, fdf-1=ad=da, ae=ea, af=fa, ag=ga, ece-1=fcf-1=bc=cb, ede-1=bd=db, be=eb, bf=fb, bg=gb, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 508 in 445 conjugacy classes, 384 normal (6 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, Q8, C23, C42, C42, C22⋊C4, C4⋊C4, C22×C4, C2×Q8, C2×C42, C42⋊C2, C4×Q8, C22⋊Q8, C42.C2, C42⋊2C2, C4⋊Q8, C23.37C23, C22.35C24, Q8⋊3Q8, C22.58C24, C22.145C25
Quotients: C1, C2, C22, C23, C24, 2- 1+4, C25, C2×2- 1+4, C22.145C25
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 51)(2 52)(3 49)(4 50)(5 36)(6 33)(7 34)(8 35)(9 53)(10 54)(11 55)(12 56)(13 57)(14 58)(15 59)(16 60)(17 61)(18 62)(19 63)(20 64)(21 37)(22 38)(23 39)(24 40)(25 41)(26 42)(27 43)(28 44)(29 45)(30 46)(31 47)(32 48)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 57 49 15)(2 60 50 14)(3 59 51 13)(4 58 52 16)(5 41 34 27)(6 44 35 26)(7 43 36 25)(8 42 33 28)(9 63 55 17)(10 62 56 20)(11 61 53 19)(12 64 54 18)(21 47 39 29)(22 46 40 32)(23 45 37 31)(24 48 38 30)
(1 55 51 11)(2 12 52 56)(3 53 49 9)(4 10 50 54)(5 29 36 45)(6 46 33 30)(7 31 34 47)(8 48 35 32)(13 17 57 61)(14 62 58 18)(15 19 59 63)(16 64 60 20)(21 41 37 25)(22 26 38 42)(23 43 39 27)(24 28 40 44)
(1 39 3 37)(2 24 4 22)(5 17 7 19)(6 62 8 64)(9 41 11 43)(10 26 12 28)(13 47 15 45)(14 32 16 30)(18 35 20 33)(21 51 23 49)(25 55 27 53)(29 57 31 59)(34 63 36 61)(38 52 40 50)(42 56 44 54)(46 58 48 60)
(1 37 3 39)(2 40 4 38)(5 17 7 19)(6 20 8 18)(9 43 11 41)(10 42 12 44)(13 47 15 45)(14 46 16 48)(21 49 23 51)(22 52 24 50)(25 53 27 55)(26 56 28 54)(29 57 31 59)(30 60 32 58)(33 64 35 62)(34 63 36 61)
G:=sub<Sym(64)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,53)(10,54)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)(21,37)(22,38)(23,39)(24,40)(25,41)(26,42)(27,43)(28,44)(29,45)(30,46)(31,47)(32,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,57,49,15)(2,60,50,14)(3,59,51,13)(4,58,52,16)(5,41,34,27)(6,44,35,26)(7,43,36,25)(8,42,33,28)(9,63,55,17)(10,62,56,20)(11,61,53,19)(12,64,54,18)(21,47,39,29)(22,46,40,32)(23,45,37,31)(24,48,38,30), (1,55,51,11)(2,12,52,56)(3,53,49,9)(4,10,50,54)(5,29,36,45)(6,46,33,30)(7,31,34,47)(8,48,35,32)(13,17,57,61)(14,62,58,18)(15,19,59,63)(16,64,60,20)(21,41,37,25)(22,26,38,42)(23,43,39,27)(24,28,40,44), (1,39,3,37)(2,24,4,22)(5,17,7,19)(6,62,8,64)(9,41,11,43)(10,26,12,28)(13,47,15,45)(14,32,16,30)(18,35,20,33)(21,51,23,49)(25,55,27,53)(29,57,31,59)(34,63,36,61)(38,52,40,50)(42,56,44,54)(46,58,48,60), (1,37,3,39)(2,40,4,38)(5,17,7,19)(6,20,8,18)(9,43,11,41)(10,42,12,44)(13,47,15,45)(14,46,16,48)(21,49,23,51)(22,52,24,50)(25,53,27,55)(26,56,28,54)(29,57,31,59)(30,60,32,58)(33,64,35,62)(34,63,36,61)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,53)(10,54)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)(21,37)(22,38)(23,39)(24,40)(25,41)(26,42)(27,43)(28,44)(29,45)(30,46)(31,47)(32,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,57,49,15)(2,60,50,14)(3,59,51,13)(4,58,52,16)(5,41,34,27)(6,44,35,26)(7,43,36,25)(8,42,33,28)(9,63,55,17)(10,62,56,20)(11,61,53,19)(12,64,54,18)(21,47,39,29)(22,46,40,32)(23,45,37,31)(24,48,38,30), (1,55,51,11)(2,12,52,56)(3,53,49,9)(4,10,50,54)(5,29,36,45)(6,46,33,30)(7,31,34,47)(8,48,35,32)(13,17,57,61)(14,62,58,18)(15,19,59,63)(16,64,60,20)(21,41,37,25)(22,26,38,42)(23,43,39,27)(24,28,40,44), (1,39,3,37)(2,24,4,22)(5,17,7,19)(6,62,8,64)(9,41,11,43)(10,26,12,28)(13,47,15,45)(14,32,16,30)(18,35,20,33)(21,51,23,49)(25,55,27,53)(29,57,31,59)(34,63,36,61)(38,52,40,50)(42,56,44,54)(46,58,48,60), (1,37,3,39)(2,40,4,38)(5,17,7,19)(6,20,8,18)(9,43,11,41)(10,42,12,44)(13,47,15,45)(14,46,16,48)(21,49,23,51)(22,52,24,50)(25,53,27,55)(26,56,28,54)(29,57,31,59)(30,60,32,58)(33,64,35,62)(34,63,36,61) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,51),(2,52),(3,49),(4,50),(5,36),(6,33),(7,34),(8,35),(9,53),(10,54),(11,55),(12,56),(13,57),(14,58),(15,59),(16,60),(17,61),(18,62),(19,63),(20,64),(21,37),(22,38),(23,39),(24,40),(25,41),(26,42),(27,43),(28,44),(29,45),(30,46),(31,47),(32,48)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,57,49,15),(2,60,50,14),(3,59,51,13),(4,58,52,16),(5,41,34,27),(6,44,35,26),(7,43,36,25),(8,42,33,28),(9,63,55,17),(10,62,56,20),(11,61,53,19),(12,64,54,18),(21,47,39,29),(22,46,40,32),(23,45,37,31),(24,48,38,30)], [(1,55,51,11),(2,12,52,56),(3,53,49,9),(4,10,50,54),(5,29,36,45),(6,46,33,30),(7,31,34,47),(8,48,35,32),(13,17,57,61),(14,62,58,18),(15,19,59,63),(16,64,60,20),(21,41,37,25),(22,26,38,42),(23,43,39,27),(24,28,40,44)], [(1,39,3,37),(2,24,4,22),(5,17,7,19),(6,62,8,64),(9,41,11,43),(10,26,12,28),(13,47,15,45),(14,32,16,30),(18,35,20,33),(21,51,23,49),(25,55,27,53),(29,57,31,59),(34,63,36,61),(38,52,40,50),(42,56,44,54),(46,58,48,60)], [(1,37,3,39),(2,40,4,38),(5,17,7,19),(6,20,8,18),(9,43,11,41),(10,42,12,44),(13,47,15,45),(14,46,16,48),(21,49,23,51),(22,52,24,50),(25,53,27,55),(26,56,28,54),(29,57,31,59),(30,60,32,58),(33,64,35,62),(34,63,36,61)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 4A | ··· | 4F | 4G | ··· | 4AG |
order | 1 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 4 |
type | + | + | + | + | + | - |
image | C1 | C2 | C2 | C2 | C2 | 2- 1+4 |
kernel | C22.145C25 | C23.37C23 | C22.35C24 | Q8⋊3Q8 | C22.58C24 | C4 |
# reps | 1 | 3 | 12 | 12 | 4 | 6 |
Matrix representation of C22.145C25 ►in GL8(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 3 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 4 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
G:=sub<GL(8,GF(5))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,4,0,0,0,0,0,3,4,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0],[0,4,4,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0] >;
C22.145C25 in GAP, Magma, Sage, TeX
C_2^2._{145}C_2^5
% in TeX
G:=Group("C2^2.145C2^5");
// GroupNames label
G:=SmallGroup(128,2288);
// by ID
G=gap.SmallGroup(128,2288);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,224,477,680,1430,723,352,2019,570,136,1684,102]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=1,c^2=f^2=g^2=a,d^2=b*a=a*b,e^2=b,d*c*d^-1=g*c*g^-1=a*c=c*a,f*d*f^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e^-1=f*c*f^-1=b*c=c*b,e*d*e^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations